Learning objectives:
- identify divide-and-conquer recurrence relations,
- apply the tree method to solve divide-and-conquer recurrence relations,
- analyze the complexity of merge-sort and binary search algorithms.

In the last lecture, we looked at recurrences of the form \(f(n) = \sum_{i=1}^{d} a_i f(n-i) \). Today, we’ll still consider linear recurrences, but instead of having a rate of 1 (in front of the \(n \) term), we’ll consider recurrences that result from breaking the problem into smaller chunks upon every recursive function call. Let’s motivate this by analyzing merge-sort.

Given an array of \(n \) items, merge sort consists of the following steps:

- If \(n = 1 \), then return the single item because this is automatically sorted.

- Otherwise, break up the array into two pieces, each of length \(n/2 \) and call merge-sort on each sub-array. Then, merge the two sorted sub-arrays.

Example 1:
Apply merge-sort to sort the array of integers \([12, 5, 16, 3, 1, 8, 4, 9]\).

Solution:
Let’s visualize the sorting procedure with a graph. The black edges represent recursive calls to merge-sort and, equivalently, when the input arrays are broken into two sub-arrays. The red edges represent the merging procedure.
How many operations are performed in merge-sort? We can determine the number of operations by developing a recurrence relation. The number of operations during any particular call to merge-sort on an input array of length \(n \) requires \(n - 1 \) operations to merge the two sub-arrays since we need to compare the leading (lowest) remaining values of each sub-array, comparing them with the current lowest value in the merged array, incurring at most \(n - 1 \) comparisons - we don’t need to do a comparison for the last remaining value. Note that no comparisons are needed when we have a single value (\(n = 1 \)). Since we need to call merge-sort on both sub-arrays, then the number of operations needed to sort an array of length \(n \) is
\[
T(n) = 2T\left(\frac{n}{2}\right) + n - 1. \tag{1}
\]

Example 2:
Use the expand-and-pray method to verify the number of operations of merge-sort is \(O(n \log n) \).

Solution:
We can write out the first few terms of the recurrence relation in Equation 1 and try to see a pattern:
\[
T(n) = (n - 1) + 2T\left(\frac{n}{2}\right)
\]
\[
= (n - 1) + 2\left(\left(\frac{n}{2} - 1\right) + 2T\left(\frac{n}{4}\right)\right)
\]
\[
= (n - 1) + (n - 2) + 4T\left(\frac{n}{4}\right)
\]
\[
= (n - 1) + (n - 2) + 4\left(\left(\frac{n}{4} - 1\right) + 2T\left(\frac{n}{8}\right)\right)
\]
\[
= (n - 1) + (n - 2) + (n - 4) + 8T\left(\frac{n}{8}\right)
\]
\[
= (n - 1) + (n - 2) + (n - 4) + \cdots + \left(n - 2^{\log n - 1}\right) + 2^{\log n} T(1)
\]
\[
= \sum_{i=0}^{\log n - 1} \left(n - 2^i\right)
\]
\[
= \sum_{i=0}^{\log n - 1} n - \sum_{i=0}^{\log n - 1} 2^i
\]
\[
= n \log n - \left(2^{\log n} - 1\right)
\]
\[
= n \log n - n + 1
\]
The detailed number of operations is \(T(n) = n \log n - n + 1 \), which is \(O(n \log n) \).
The expand-and-pray method worked fine, but it's a bit tricky when
the recurrence relation is more complicated. Luckily, there is a more
formal method for solving recurrences of this type. We call these types
of recurrences divide-and-conquer recurrences, since we are "dividing"
the problem into a few subproblems, "conquering" those subproblems,
and then solving the current problem using the solution to the sub-
problems.

1 Tree method for divide-and-conquer recurrences

Consider a recurrence relation of the form

\[f(n) = a \cdot f\left(\frac{n}{b}\right) + c \cdot n^d \] (2)

where \(n = b^k \) for some \(k \in \mathbb{Z}^+ \), \(a \geq 1 \), \(b > 1 \), \(b \in \mathbb{Z}, c > 0, d \geq 0 \)
and \(a, c, d \in \mathbb{R} \). We can characterize the complexity of \(f(n) \) for various
cases:

\[
f(n) = \begin{cases}
O(n^d) & \text{if } a < b^d \\
O(n^d \log n) & \text{if } a = b^d \\
O(n^{\log_b a}) & \text{if } a > b^d.
\end{cases}
\]

Before we can apply the theorem, it’s important to be able to say in
words what all the terms in Equation 2 mean:

- \(a \): number of subproblems created during the recursive step,
- \(b \): factor by which problem shrinks in the recursive steps,
- \(c, d \): characterizes extra work performed outside of recursive func-
tion call.

In other words, divide-and-conquer algorithms divide a problem of
size \(n \) into \(a \) subproblems, each of which has a size of \(n/b \). Let’s do a
few examples to practice applying this method.

Example 3:
Use the Tree Method to determine the complexity of merge-sort.

Solution:
Matching coefficients in Equation 1 with Equation 2 gives \(a = 2 \),
\(b = 2, d = 1. \) Since \(a = b^d \), then \(T(n) = O(n \log n) \).
Example 4:
Develop a recurrence relation for the binary search algorithm, described in Algorithm 1 and apply the Tree Method to determine the number of operations executed in binary search.

Solution:
On each entry to the function, the binary search algorithm makes a single recursive function call, depending on the value of the middle index \(m \), \(x \) and \(a \) (either Lines 9 or 11 are executed, but never both). Each of these divides the problem into half. There are four operations: one to retrieve the length of the array, another to compute the middle index, a comparison with the requested value, and a final one to determine whether we need to search the lower/upper half of the array. We’ll just use a constant \(c \) to represent these operations.

\[
T(n) = T(n/2) + c.
\]

Since only a single operation is performed in the \(n = 0 \) case, then \(T(0) = 1 \). Again, the actual value of the constant doesn’t really matter (i.e. if you have 0, 1 or even 2 operations), as long as it is independent of \(n \). Using the Tree method, we identify the constants as \(a = 1 \) \(b = 2 \) and \(d = 0 \), so \(T(n) = O(\log n) \).

Algorithm 1: Binary search algorithm to determine if an array \(a \) contains a value \(x \) (returns True or False)

```python
binary_search(a, x)

    input: sorted array \( a \), value \( x \)
    output: boolean as to whether \( a \) contains the value \( x \)

1  n ← length(a)
2  if n == 0
3      return False
4  else
5      m ← n // 2  # use integer division to get middle index
6      if a[m] == x
7          return True
8    else if a[m] < x
9          return binary_search(a[m+1:n], x)
10  else
11    return binary_search(a[0:m], x)
```