Problem 1

(a) Identify the flaw in the following proof.

If \(T(1) = 1 \) and \(T(n) = 4T(n/2) + n \), then \(T(n) = O(n) \).

Proof. We use a proof by strong induction. Let \(p(n) \) be the predicate that \(T(n) \) as defined above, is \(O(n) \).

Base case: For \(n = 1 \), \(p(1) \) is true because \(T(1) = 1 \) is \(O(1) \).

Inductive step: Assume \(p(1) \land p(2) \land \cdots \land p(n-1) \land p(n) \) are true. We need to show that \(p(n+1) \) is true. Plugging \(n+1 \) into the recurrence relation gives

\[
T(n+1) = 4T((n+1)/2) + n + 1.
\]

By our assumption \(p((n+1)/2) \) is true, so \(T((n+1)/2) \) is \(O(n) \), as is \(4T((n+1)/2) \). Also, \(n + 1 \) is \(O(n) \), so \(T(n+1) \) is \(O(n) \).

Therefore, by induction on \(n \), \(T(n) \) is \(O(n) \).

(b) Express \(T(n) \) in big-oh notation (correctly).

Problem 2

Consider a variant of mergesort, called tri-mergesort. During the recursive step of tri-mergesort, instead of breaking up the length-\(n \) array into two subarrays, we will break it up into three subarrays of length \(n/3 \), and recursively sort these three subarrays. Once these three subarrays are sorted, we will merge them into the length \(n \) array. In the following analysis, you may assume that the length of the array is a power of 3 (i.e. \(n = 3^k \) for some integer \(k \)).

(a) How many comparisons are needed to merge three subarrays of length 1?
(b) Roughly how many operations are needed to merge three subarrays of length $n/3$? A handful of operations (constant)? Some factor of the length of the array? n^2?

(c) Define a divide-and-conquer recurrence for this algorithm. Let $T(n)$ be the number of operations used to sort a list of n items.

(d) Use the Tree Method (or Alpha-Bits theorem) to express the number of operations in tri-mergesort in big-oh notation.