Problem 1

In this problem, we will derive the Tree Theorem together. Let’s start with a divide-and-conquer recurrence relation of the form:

\[f(n) = a \cdot f\left(\frac{n}{b}\right) + c \cdot n^d \]

where \(n = b^k \) for some \(k \in \mathbb{Z}^+ \), \(a \geq 1 \), \(b > 1 \), \(b \in \mathbb{Z} \), \(c > 0 \), \(d \geq 0 \) and \(a, c, d \in \mathbb{R} \). Recall that \(a \) refers to the number of subproblems created on each recursive step, \(b \) is the fraction by which the problem size decreases on each recursive function call, and \(n^d \) characterizes the amount of work done (in the recursive step) separate from the recursive function call.

Consider drawing a stack diagram for the recursive function calls. This will look like a tree, in which each internal vertex has \(a \) children. Let \(k \) represent the number of levels we have traversed down the tree.

(a) How many vertices are there at level \(k \)?

(b) What is the size of the problem at level \(k \)?

(c) How much work is done within a single vertex of the tree at level \(k \)?

(d) How much work is done at level \(k \)?

(e) At what level will the original array of length \(n \) have been broken up into arrays of length 1?

(f) How much total work is done?

(g) Simplify your expression for part (d) for the case when \(n \) gets really really big. Do this for three cases: (i) \(a < b^d \), (ii) \(a = b^d \) and (iii) \(a > b^d \).

Problem 2

Recall how to multiply two matrices \(A \) and \(B \) - in the problem, we’ll write out matrix multiplication as an algorithm! We’ll restrict our attention to square matrices of size \(n \times n \) where \(n = 2^k \) for some nonnegative integer \(k \). A naive version of the algorithm can be written as follows:

```plaintext
matmul(A, B)

input: n \times n matrices A and B
output: n \times n matrix C = AB.
1  C ← 0
2  for i = 1 → n
3     for j = 1 → n
4       for k = 1 → n
5          c_{i,j} = c_{i,j} + a_{i,k} * b_{k,j}
```

(a) Give a big-oh estimate for the number additions and multiplications performed by the `matmul` algorithm?
(b) Consider a divide-and-conquer (DAC) method for multiplying two matrices. We will represent the matrix multiplication as a multiplication of 2×2 block matrices, in which each block is an $n/2 \times n/2$ matrix. These blocks are denoted by a, b, c, d, e, f, g, h, s, t, u, v below. The matrix multiplication then becomes:

$$
\begin{bmatrix}
 r & s \\
 t & u
\end{bmatrix} =
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 e & f \\
 g & h
\end{bmatrix} =
\begin{bmatrix}
 (ae + bg) & (af + bh) \\
 (ce + dg) & (cf + dh)
\end{bmatrix}
$$

The DAC approach thus consists of computing $(ae + bg)$, $(af + bh)$, $(ce + dg)$ and $(cf + dh)$ recursively. How many $n/2 \times n/2$ matrix multiplications are performed on each recursive function call? How many additions are performed? Develop a recurrence relation to describe the number of operations (counting only additions and multiplications) for the DAC algorithm. Use the Tree Method to express the number of operations of the DAC `matmul` algorithm in big-oh notation.

(c) The DAC algorithm of part (b) can be improved by reducing the number of block multiplications performed in the recursive step. This is know as Strassen’s algorithm, which computes the $n \times n$ matrix multiplication during the recursive step as follows:

$$
\begin{align*}
P_1 &= a \cdot (f - h) \\
P_2 &= (a + b) \cdot h \\
P_3 &= (c + d) \cdot e \\
P_4 &= d \cdot (g - e) \\
P_5 &= (a + d) \cdot (e + h) \\
P_6 &= (b - d) \cdot (g + h) \\
P_7 &= (a - c) \cdot (e + f)
\end{align*}
$$

then

$$
\begin{align*}
r &= P_5 + P_4 - P_2 + P_6 \\
s &= P_1 + P_2 \\
t &= P_3 + P_4 \\
u &= P_5 + P_1 - P_3 - P_7
\end{align*}
$$

How many multiplications are performed in the recursive step? How many additions/subtractions? Develop a recurrence relation to describe the number of operations for Strassen’s algorithm, and use the Tree Method to bound the number of operations using big-oh notation.

(d) Verify that Strassen’s algorithm computes the correct matrix-matrix multiplication on each recursive step.